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Graph Coloring

We want to color a graph properly—such that no two adjacent vertices
have the same color. How many ways can we do this with at most x = 5
colors?

K3 P4 Claw C4

For the graph K3, we get 60 ways .

For P4, we get 320 ways .

The same is true for the claw graph.

For C4, we must resort to casework on whether vertex diagonal vertices
have the same color. We get 260 ways .
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Chromatic Polynomial

Birkhoff defined the chromatic polynomial trying to solve the 4-color
theorem.

Definition (Chromatic Polynomial)

For a graph G , we define the chromatic polynomial χG (x) to be the
number of proper colorings of G with at most x colors.
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Definition (Chromatic Polynomial)

For a graph G , we define the chromatic polynomial χG (x) to be the
number of proper colorings of G with at most x colors.

K3 P4 Claw C4

Example

The chromatic polynomials of the graphs above are

χK3(x) = x(x − 1)(x − 2), χP4(x) = x(x − 1)3,

χclaw(x) = x(x − 1)3, χC4(x) = (x − 1)4 + (x − 1).

Note that the chromatic polynomial of the claw and P4 are the same.
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A Symmetric Generalization

Stanley defined a generalization of this polynomial in [10].

Definition (Proper Coloring)

A proper coloring of graph G is a function κ : V (G ) → N such that if
(i , j) ∈ E (G ), then κ(i) ̸= κ(j).

Definition (Chromatic Symmetric Function)

For a graph G with n vertices, we define the chromatic symmetric function
XG (x) as a function on x = (x1, x2, . . .), an infinite sequence of variables.

XG (x) =
∑

κ is proper

(
n∏

i=1

xκ(i)

)
.
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Definition (Chromatic Symmetric Function)

XG (x) =
∑

κ is proper

(
n∏

i=1

xκ(i)

)
.

Example

What is the chromatic symmetric function of P2?

1 2

x1x2 +

2 1

x2x1 +

8 4

x8x4 + . . .

Say I color the left vertex “1” and the right vertex “2”. Then, I can
associate with that proper coloring the monomial x1x2. For every proper
coloring, I can associate a monomial of degree 2.
In general, we get that

XP2(x) = (x1x2 + x1x3 + · · · ) + (x2x1 + x2x3 + · · · ) + · · · =
∑
i ,j∈N
i<j

2xixj .
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Chromatic Symmetric Function Reasoning

One cool property of the chromatic symmetric function is that it seems to
be able to differentiate trees.

Conjecture

Non-isomorphic trees have different chromatic symmetric functions.

Chromatic Symmetric Function to Chromatic Polynomial

If we know the XG (x), we can find χG (x) for any x, with

χG (x) = XG (

x ones︷ ︸︸ ︷
1, . . . , 1, 0, . . .)

The chromatic symmetric function can be used to find acyclic orientations
of a graph, and is closely related to Jacobi Trudi matrices, Hessenberg
varieties, and the characters of Kazhdan–Lusztig elements of the Hecke
algebra [1, 2, 11].
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Chromatic Symmetric Function Problems

The chromatic symmetric function has an infinite number of terms, which
makes writing it a pain.

Example

The chromatic symmetric function for P4 can be written as

XP4(x) =
∑
i ,j∈N
i<j

2x2i x
2
j +

∑
i ,j ,k∈N
j<k

i ̸=j ,i ̸=k

4x2i xjxk +
∑

i ,j ,k,l∈N
i<j<k<l

24xixjxkxl .

It turns out we can write the chromatic symmetric function as the finite
sum of basis functions. We will work with the e-basis.
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Elementary Basis

Definition (Elementary Basis)

We define e(1) = x1 + x2 + · · · as the sum of xi for i ∈ N.

We define e(2) = x1x2 + x1x3 + · · ·+ x2x3 + x2x4 + · · · as the pairwise sum.
We define e(3) as the sum of xixjxk for all natural numbers i < j < k .
So e(n) is the “n-wise” sum xa1 · · · xan for all a1 < · · · < an.

We define e(a1,a2,...,an) = e(a1) · · · e(an).
For example, e(4,3,1,1) = e(4) · e(3) · e(1) · e(1).
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Elementary Basis

Every symmetric function can be written uniquely in the e-basis.

Example

The chromatic symmetric function of P2 is

XP2(x) =
∑
i ,j∈N
i<j

2xixj = 2e(2).
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Every symmetric function can be written uniquely in the e-basis.

K3 P4 Claw C4

Example

The chromatic symmetric functions for the graphs above are

XKn(x) = n!e(n), XP4(x) = 2e(2,2) + 2e(3,1) + 4e(4),

XC4(x) = 2e(2,2) + 12e(4), Xclaw(x) = e(2,1,1) − 2e(2,2) + 5e(3,1) + 4e(4).
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Positivity Conjectures

It seems like for most of the graphs, all coefficients of XG (x) are positive
in the e-basis; they are e-positive. The claw is a notable counterexample.

Positivity in the e-basis is studied a lot because it is also related to many
different fields.

Conjecture (Simplified Stanley-Stembridge Conjecture [9, 11])

All unit interval graphs are e-positive.

Conjecture (Dahlberg, She, and van Willigenburg [8])

Any tree with a vertex of degree at least four is not e-positive.

Some graphs, including paths, cycles, cliques connected at single vertices,
and a few other families of graphs have all been proven to be e-positive
[3, 4, 5, 6, 7, 12, 13].
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Our Positivity Theorem

Theorem (Tom, V.)

Adjacent cycle chains, which are graphs formed by connecting cycles at
adjacent vertices, are e-positive.
Adjacent cycle+clique chains are also e-positive.

Figure: Adjacent cycle chain C3 + C5 + C4 + C5 next to cycle+clique chain
C3 + K5 + K4 + C5.
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Motivation
My mentor proved cliques connected at single vertices are e-positive.

Figure: Clique chain K3 + K5 + K4 + K5.

The e-positivity of cycles and graphs related to cycles (like cycle chords,
dumbbells, and tadpoles) has been studied, but not cycle chains.

Figure: Dumbbell and Tadpole graphs.

C5 + C2 + C2 + C4 C2 + C2 + C2 + C6
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Example

Example

The chromatic symmetric function of the graph below can be calculated as

XC5+C4(x) = 6e(3,2,2,1) + 6e(3,3,2) + 20e(4,2,2) + 18e(4,3,1) + 40e(5,2,1)+

54e(5,3) + 108e(6,2) + 72e(7,1) + 96e(8),

which indeed has positive coefficients.
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Example

The formula works for large graphs!

Example

For G = C3 + C5 + C4 + C5, the chromatic symmetric function is
XG (x) =24e(3,3,2,2,2,2)+56e(3,3,3,2,2,1)+48e(3,3,3,3,2)+116e(4,3,2,2,2,1)+32e(4,3,3,2,1,1)+

348e(4,3,3,2,2)+160e(4,3,3,3,1)+12e(4,4,2,2,1,1)+80e(4,4,2,2,2)+112e(4,4,3,2,1)+32e(4,4,3,3)+

24e(5,2,2,2,2,1)+88e(5,3,2,2,1,1)+544e(5,3,2,2,2)+648e(5,3,3,2,1)+480e(5,3,3,3)+496e(5,4,2,2,1)+

24e(5,4,3,1,1)+868e(5,4,3,2)+96e(5,5,2,1,1)+1112e(5,5,2,2)+248e(5,5,3,1)+64e(5,5,4)+72e(6,2,2,2,1,1)+

128e(6,2,2,2,2)+40e(6,3,2,1,1,1)+1176e(6,3,2,2,1)+152e(6,3,3,1,1)+1488e(6,3,3,2)+180e(6,4,2,1,1)+

832e(6,4,2,2)+360e(6,4,3,1)+2288e(6,5,2,1)+792e(6,5,3)+360e(6,6,1,1)+1008e(6,6,2)+48e(7,2,2,1,1,1)+

668e(7,2,2,2,1)+864e(7,3,2,1,1)+1996e(7,3,2,2)+1232e(7,3,3,1)+1136e(7,4,2,1)+512e(7,4,3)+

480e(7,5,1,1)+3012e(7,5,2)+2008e(7,6,1)+896e(7,7)+892e(8,2,2,1,1)+1120e(8,2,2,2)+168e(8,3,1,1,1)+

3332e(8,3,2,1)+1440e(8,3,3)+192e(8,4,1,1)+1344e(8,4,2)+1536e(8,5,1)+1344e(8,6)+320e(9,2,1,1,1)+

3336e(9,2,2,1)+1304e(9,3,1,1)+3216e(9,3,2)+680e(9,4,1)+1176e(9,5)+2620e(10,2,1,1)+3104e(10,2,2)+

2816e(10,3,1)+576e(10,4)+480e(11,1,1,1)+5548e(11,2,1)+1824e(11,3)+2072e(12,1,1)+3456e(12,2)+

2920e(13,1)+1344e(14).
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Other Cycle Chains
What about non-adjacent cycle chains?

Figure: Adjacent cycle chain C3 + C4 + C3 on the left, next to a non-adjacent
cycle chain.

It turns out most non-adjacent cycle chains are not e-positive. However, a
few are—one possible further direction is finding when non-adjacent cycle
chains are e-positive.

XG (x) = 16e(3,3,1,1) − 24e(3,3,2) + 72e(4,3,1) + 80e(4,4) + 24e(5,2,1)+

24e(5,3) + 40e(6,1,1) + 48e(6,2) + 128e(7,1) + 96e(8).
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